Translocation of a “Winner” Climbing Fiber to the Purkinje Cell Dendrite and Subsequent Elimination of “Losers” from the Soma in Developing Cerebellum

نویسندگان

  • Kouichi Hashimoto
  • Ryoichi Ichikawa
  • Kazuo Kitamura
  • Masahiko Watanabe
  • Masanobu Kano
چکیده

Functional neural circuits are formed by eliminating early-formed redundant synapses and strengthening necessary connections during development. In newborn mouse cerebellum, each Purkinje cell (PC) is innervated by multiple climbing fibers (CFs) with similar strengths. Subsequently, a single CF is selectively strengthened by postnatal day 7 (P7). We find that this competition among multiple CFs occurs on the soma before CFs form synapses along dendrites. Notably, in most PCs, the single CF that has been functionally strengthened (the "winner" CF) undergoes translocation to dendrites while keeping its synapses on the soma. Synapses of the weaker CFs (the "loser" CFs) remain around the soma and form "pericellular nests" with synapses of the winner CFs. Then most perisomatic synapses are eliminated nonselectively by P15. Thus, our results suggest that the selective translocation of the winner CF to dendrites in each PC determines the single CF that survives subsequent synapse elimination and persistently innervates the PC.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Dendritic translocation establishes the winner in cerebellar climbing fiber synapse elimination.

In many regions of the developing mammalian nervous system, functional synaptic circuitry is formed by competitive elimination of early formed redundant synapses. However, how winning synapses emerge through competition remains unclear in the brain largely because of the technical difficulty of directly observing this dynamic cellular process in vivo. Here, we developed a method of two-photon m...

متن کامل

Sodium imaging of climbing fiber innervation fields in developing mouse Purkinje cells.

Maturation of specific neuronal connections in the mature nervous system includes elimination of redundant synapses formed earlier during development. In the cerebellum of adult animals, each Purkinje cell (PC) is innervated by a single climbing fiber (CF). In early postnatal development each PC is innervated by multiple CFs and elimination of synapses formed by supernumerary CFs occurs until m...

متن کامل

Role of Oxidative Stress in Ethanol-induced Neurotoxicity in the Developing Cerebellum

Objective(s) The purpose of this study was to investigate the role of oxidative stress in Purkinje cell neurotoxicity ofethanol-treated rat. Materials and Methods Male rat pups 4-day-old was used in this study. Ethanol was administered to rat pups at a dose of 6 g/kg from postnatal days (PDs) 4 to 5.  Pups were killed 90 min after the second alcohol treatment on PD 5 by decapitation and the ...

متن کامل

GABAergic Inhibition Regulates Developmental Synapse Elimination in the Cerebellum

Functional neural circuit formation during development involves massive elimination of redundant synapses. In the cerebellum, one-to-one connection from excitatory climbing fiber (CF) to Purkinje cell (PC) is established by elimination of early-formed surplus CFs. This process depends on glutamatergic excitatory inputs, but contribution of GABAergic transmission remains unclear. Here, we demons...

متن کامل

It's Lonely at the Top: Winning Climbing Fibers Ascend Dendrites Solo

In mammals, climbing fiber axons compete for sole innervation at each Purkinje cell. At the same time, synapses disappear from Purkinje somata and appear in great numbers on the dendrites. In this issue of Neuron, Hashimoto et al. show that, by the time climbing fibers ascend the dendrites, the winner and losers are already decided.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Neuron

دوره 63  شماره 

صفحات  -

تاریخ انتشار 2009